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ABSTRACT

A number of analytic techniques used in Artificial Intelligence are examined in the context of
decision making in mine countermeasures. Attention is directed at five major techniques,
involving statistical inference, probabilistic inference, evidential reasoning, fuzzy logic and
artificial neural networks. In the cases of statistical inference and evidential reasoning,
solutions to appropriate problems are described. Eleven other techniques are dealt with more
briefly, in most cases with worked examples of appropriate naval application.

The main conclusion reached is that, in view of the probable shortage of accurate information
under operational conditions, evidential reasoning and fuzzy logic are likely to be the most
appropriate means for presenting relevant data to decision makers, and that artificial neural
networks will be useful for representing complicated or empirical relationships between
observed factors.
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Application of Artificial Intelligence to Decision
Making in Mine Countermeasures

Executive Summary

The discipline of Artificial Intelligence (Al) is characterised by the development of
computational models emulating various aspects of human intelligence. Computer-
based Al techniques have possible application whenever the speed and volume of
information processing threatens to overwhelm the human resources available. The Al
approach is characterised by an accent on symbolic representations and inference
rather than being restricted to classical quantitative approaches used in electronic data
processing. Very little knowledge in the world is precise, certain, or complete and Al
techniques offer a means of processing this uncertain or incomplete information.

In this report, selected Al techniques are investigated in the context of minewarfare
modelling and mine countermeasures. Even when the nation or organisation
responsible for a mine field can be identified, there may be uncertainty as to the type of
mine laid. In addition, any given modern mine can be configured in many ways, with
variations in parameters such as the ship count, sensor settings, and the mine-actuation
algorithm. The number and location of mines may never be known with any certainty.
All of these issues are at present addressed using probabilistic and statistical methods.
At an operational level, it is unusual for initial estimates of critical factors to be
updated continually on the basis of events that have been experienced, such as the
number of mines activated during sweeping. If an unexpected event occurs, operations
may be stopped whilst revised tactics are considered. Al methods offer scope for the
incorporation of decision-making that is adaptive and partially autonomous.

This investigation revealed that the approaches with most potential for applications in
mine countermeasures include evidential reasoning, fuzzy logic and, to a lesser extent,
artificial neural networks. Evidential reasoning is a basis for representing uncertain
and incomplete information, and provides working tools for manipulating bodies of
available evidence. Fuzzy logic deals with a different type of uncertainty to that
associated with evidential reasoning - the uncertainty is with respect to the quantitative
values of factors, rather than in the confidence placed on specified conditions. Fuzzy
logic can also deal with relationships represented in vaguely defined concepts.
Artificial neural networks are best suited to classification problems in domains where
good training data are available, and are often associated with domain interpolation
rather than extrapolation.
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associated with human intelligence. Al techniques are particularly useful in problems
where human performance may be compromised by the volume of information
available and the speed of processing which is required. Al is commonly described as
being an area of computer science! that focuses on the application of symbolic
representation and inference to problem solving, as opposed to the more conventional
numerical approaches used in traditional computer science programmes.

One concept dealt with in the field of artificial intelligence is how to utilise uncertain
and incomplete information. Very little knowledge in the world is precise, certain, or
complete. For example the information is incomplete when you know a body of water
has been mined, but you do not know how many mines have been laid, where they
have been laid, or the type of mines laid. The information is uncertain when you do
not know whether, given an opportunity, a mine will detonate, or whether it is
defective, or has been rendered inoperative.

Of particular interest to mine countermeasures (MCM) applications is how imprecise
information is represented and used for reasoning by a computer. In this report, we
summarise an investigation of selected AI techniques which show promise in
minewarfare modelling and mine countermeasures. A glossary of terms used is given
in Appendix F.

1.1 Mine Countermeasures Domain
Mine countermeasure (MCM) operations comprise four major activities, namely

¢ clearance diving: the use of free-swimming Navy personnel to locate, identify
and possibly dispose of individual mines and mine-like objects (MLOs),

¢+ minehunting: the use of specialist craft to locate, identify and possibly dispose of
individual mines and MLOs,

+ minesweeping: the use of specialist craft or craft of opportunity (COOPs) to
cause mines to explode harmlessly by misleading mine sensors or mine-
actuation algorithms, without necessarily locating individual mines, and

+ route survey: the use of specialist craft or COOPs to locate, record the positions
of and possibly identify individual mines and MLOs, and to identify safe paths
through potential mine fields.

1 The field of artificial intelligence is considered to spans a diverse range of disciplines, including
computer science, mathematics, physics, psychology, engineering, and philosophy.
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All MCM activities are subject to considerable uncertainty as to the threat to be
countered. Even when the country or organisation responsible for a mine field can be
identified, there may be uncertainty as to the type or types of mine laid. In addition,
any given modern mine can be configured in many ways, with variations in
parameters such as

+ the ship count (a ship count of # means that n - 1 ships assessed as targets are
allowed to pass unharmed before the mine is ‘poised’ to explode on the next
presumed target),

+ the sensitivities of various detectors and the values of critical time intervals, and

+ the type of algorithm by which the mine-actuation system determines whether it
has detected a target.

Finally, the number and location of mines will never be known with any certainty. All
of these difficulties are currently handled using probabilistic and statistical methods.
In all of the four MCM activities, it is not usual for initial estimates of critical factors to
be updated continually on the basis of events that have been experienced, such as the
number of mines activated during sweeping. If an unexpected event occurs, however,
operations may be stopped whilst revised tactics are considered.

1.2 Al and MCM Applications

In MCM operations, decisions must be made on the basis of previous experience
combined with a wide variety of information, some verifiable and quantitative in
nature, and some based on tentative assumptions and reports of varying reliability. Al
techniques have the potential to supplement existing algorithms under a variety of
conditions. These include cases where:

+ An algorithm exists, but with present computing techniques is incapable of
running in real time. Here, Al techniques would be used to summarise the
conclusions reached by repeated off-line applications of the algorithm. For
example, the expectation for the effectiveness of a mine-hunting operation, or for
the probability that a mine will operate within the damage radius of a particular
target, is currently computed by repeated application of determinate physical
models, possibly using some type of stochastic approach. Acquisition of
sufficient data for decision-making requires many hours of computation, but,
after this has been done, the results can be presented in a form, e.g. as an artificial
neural network, that can run in a few seconds on a minimal computer.
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¢ Decisions are based on experience that is difficult to describe quantitatively. In
this case, Al techniques can be used to simulate the decision process without the
necessity for quantifying, or even describing, the processes involved. An
example of this would be the detection of ground mines in sonar displays. An
intelligent system can learn, through experience, to make the same decisions
that experienced operators have made in a representative selection of operations,
and so can present a possibly inexperienced operator with automatic cueing
aids. The techniques involved here might be neural networks or fuzzy logic,
separately or in combination.

L

Decisions are based on qualitative rules, which may not even have been
formulated explicitly, using a wide variety of qualitative and quantitative data
and criteria. In such cases, data may be inaccurate, missing, of variable
reliability or even contradictory. Here, Al techniques can be used to summarise
the data and to present the appropriate commander with estimates of the
possible consequences of various options. Such a case might be the selection of
the most effective use of assets (clearance diving, minehunters, minesweepers)
for clearance operations. This type of problem, based on a (usually complex) set
of rules gained from experience, is typical of what are usually called production
systems, and additional Al techniques involved here are likely to include fuzzy
logic and evidential reasoning.

This report summarises an investigation of techniques considered by the authors to be

appropriate to particular minewarfare modelling and mine countermeasures
applications.

1.3 Techniques Investigated

Artificial intelligence is not just a single technique; rather, it is a name loosely applied
to a large variety of techniques. Often these approaches are intended to represent, to
some extent, some of the decisions and assessments made by a human expert in a field
of interest. Table 1 shows the techniques (AI and others) that have received some
consideration in this report.

These techniques can be divided, for the purpose of the MCM problem domain, into a
number of major groups:

+ logical inference - techniques that require full knowledge of the conditions under
which decisions must be made, and then perform a (usually complicated) series
of operations or calculations,

¢ uncertain reasoning - techniques that make allowances for missing, inaccurate
and/or inconsistent data in coming to what is intended to be the most probably
correct solution,
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+ functional relationship - techniques that describe behaviour of interest in terms
of contributing factors, usually when the objective relationship is too
complicated to be modelled (or perhaps even understood),

+ decision updating - techniques that present a model of the system of interest,
and are used to correct this model in the light of new information, and

+ classification - techniques that make a decision on the identity or character of an
object or person, using whatever information is available.

Naturally, not all of these techniques are of equal interest to the objectives of this
report, and some have been included merely for completeness. As foreshadowed
above, the techniques of most interest will be shown to be the evidential-reasoning
and fuzzy-logic approaches to uncertain reasoning, and the representation of
functional relationships using artificial neural networks. The remainder of the report
comprises a brief overview of all the techniques referred to in Table 1, followed by
appendices describing in more detail the five most relevant to MCM applications.

Whilst it is not feasible to give a comprehensive overview as to which techniques are
suited to particular types of problem, Table 2 gives an indicative set of descriptions
and applications.

1.4 Report Organisation

Section 2 of this report outlines some of the standard approaches provided by Al to
representing knowledge and inference rules. It is apparent from this section that
formal logic and its adaptations are not appropriate to dealing with uncertain and/or
incomplete information. However, representation and reasoning with imprecise
information usually involves the development of a hybrid system that includes a
formal knowledge representation schemes adapted to utilise a specific uncertain
reasoning technique.

Section 3 summarises those techniques identified by the authors as being of particular
use for representing and reasoning with uncertain and/or incomplete information.
These approaches include statistical inference, probabilistic inference, evidential
reasoning, fuzzy logic, and artificial neural networks. A detailed examination of these
techniques and how they may be applied to MCM problems is found in Appendices A
to E.

Section 4 briefly describes other techniques (some borrowed from pattern recognition)
that may be useful for dealing with imprecise information, but show less
appropriateness to the MCM applications under investigation in this report.
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Section 5 is a discussion of the relative appropriateness of the AI techniques
investigated to some MCM applications.

Appendices A to E explain in a textbook fashion statistical inference, probabilistic
inference, evidential reasoning, fuzzy logic, and artificial neural networks respectively.
Included in these sections are examples of how one might apply the techniques to an
MCM problem.

Appendix F is a glossary of terms set out in a functional format, describing in an
informal manner, the meaning of some of the technical terminology used in AL

Table 1 - Summary of Technigues Investigated

Logical Inference
‘ Propositional Logic

L—————— Predicate Calculus
Production Systems

Frames

Semantic Networks

Uncertain Reasoning

Statistical Inference
Probabilistic Inference
Evidential Reasoning
Fuzzy Logic
Probabilistic Logic

Functional Relationships
Neural Networks

Updating Decisions
‘ Nonmonotonic Reasoning

Maximum Relative Entropy

Classification

Cluster Analysis

Figure of Merit

Templating
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Table 2 - Indicative Applications for Investigated Techniques

Al Method

Description and Indicative Application

Predicate Calculus
Frames

Semantic Networks

Statistical Inference

Probabilistic Inference

Evidential Reasoning

Fuzzy Logic

Probabilistic Logic

Neural Networks

Nonmonotonic Reasoning

(NMR)

Maximum Relative
Entropy

Cluster Analysis

Figure of Merit

Templating

A formal logic system applicable when the behavioural rules for a system,
and the inputs to the system, are completely known.

A means of describing numerous examples of related objects (e.g. ships),
with known interactions between them.

A graphical knowledge representation scheme appropriate when describing
objects and complicated relationships between them, such as inheritance of
properties, ownership and interactions.

A technique for estimating confidence in alternative hypotheses given
information on statistical distributions of contributing factors.

A system of approximate reasoning back from events to causes, given the
probabilities of all causes and the probability of the event occurring as a
result of each cause.

A method of determining confidence in alternative hypotheses, given an
empirical or subjective assessment of beliefs in propositions that may be
incomplete or inconsistent, and may be from different sources and/or
expressed in different frames of reference.

A formal logic system appropriate when information is imprecise and/or
when rules for reasoning are approximate.

A formal logic system that produces estimates of the probabilities of
logically provable events, given sets of propositions and events, with
empirical or subjective probabilities of their truth.

A system capable of learning to produce a required set of results for a
representative set of inputs, and used to estimate the expected results from
different sets of inputs.

A form of reasoning based on qualitatively ranked statements, using the
best available information, and including a process for withdrawing
conclusions in the light of new evidence.

A form of logical reasoning based on selecting data so as to minimise the
uncertainty of conclusions reached.

A classification technique based on the position in a multi-dimensional
parameter space of the properties of a system or event.

A classification technique based on algebraic functions of the properties of a
system or event.

A classification technique based on the extent to which the properties of a
system or event comply with given criteria.
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2. Logic and Knowledge Representation

Artificial intelligence systems are often characterised by their approach to symbolic
search and representation. Often this will involve a knowledge base, used to store
generic and domain specific information, and an inference mechanism, used to draw
conclusions and reason. The inference mechanism searches through the knowledge
base looking for solutions or answers to specific problems or questions.

Logical inference requires a complete and precise description of the problem to be
solved, and of the conditions that apply for a given attempt at solution. It then uses
the conclusions of existing solutions that, when combined using known rules of
inference, approach the target solution until the chain of inference leads to what is
required. It is thus applicable principally to relatively simple systems with clearly
defined rules, such as theorem proving in algebra and geometry. When it is
applicable, however, it has the advantage that it is characterised by a result that is
known to be valid, consistent and precise.

This section discusses some of the more common forms of knowledge representation,
and examines various techniques for producing inference mechanisms.

2.1 Propositional Logic

The term propositional logic (Frenzel, 1987) is used to describe what one might refer to
as classical logic, and it was therefore one of the first representations schemes used in
Al Here, problems are solved deductively using rules of inference to derive a
conclusion, given certain axioms. The form, or syntax, of a statement is rigid and the
determination of truth is by syntactic formula manipulation. Propositional logic deals
with constant statements (or propositions) known to be either true or false. Legal
connectives in the construction of statements are and, or, not and if. The overall
expressive power of this form of logic is restricted by the simple connectives available.
Barr and Feigenbaum (1981) have pointed out that this results in a difficulty in
expressing complex concepts.

Propositional logic allows us to express statements like, if minehunter is in dry-dock,
then it is not available for service. Given the propositions:

X = minehunter is in dry-dock, and
Y = available for service.

The sentence (or properly formed logically expression) can be represented
arithmetically as

X=-Y.
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When such statements are broken up into combinations of variables and connectives,
sentences of propositional logic can be constructed. These sentences can then be
manipulated similarly to normal algebraic expressions in mathematics.

2.2 Predicate Calculus

The expressive power of propositional logic is generally insufficient for knowledge
representation. Predicate calculus (Barr and Feigenbaum, 1981; Frenzel, 1987), an
extension of propositional logic, allows one to describe the objects that make up a
proposition, and reason about both object and proposition. The expressive power of
predicate calculus comes from the way knowledge is represented. Predicate calculus
in conjunction with first order logic allows for the association of qualities and
attributes with objects, for relationships between sets of objects, and for general
statements to be made about objects.

Predicate calculus has a well-defined formal semantics, and its inference rules are
sound? and complete3 (Charniak and McDermott, 1985). Like propositional logic, it is
a language for representing propositions and rules to generate facts from those given
to the system. Predicate calculus consists of predicates that are statements about
individuals or objects, their properties, and their relationships with other objects,
which return a true or false value. Predicate calculus also allows the manipulation of
quantified statements such as all current mines have acoustic wake-up. This may be
expressed in predicate calculus using the quantifier V, meaning for all , and the
variable X, as

VX , CurrentMines(X ) = AcousticWakeUp (X).

Similarly, the expression, there is an FFG-class vessel that is friendly, may be expressed
using the quantifier 3, meaning there exists, and the variable X, as

X, FFGClass(X ) A Friendly(X ).

Reasonably complex expressions and assertions can be made when presented using
formal expressions in sentences of first-order logic.

The use of predicate calculus as a knowledge representation scheme in Al has met
with mixed results. Although resolution will always provide a correct answer if all
information is correct and an answer exists, the system is very general and clumsy.
When the problem becomes non-trivial, there is a combinational explosion in the

2Describing an inference for which, given a set of propositions and an inference rule, every inference
follows the inference rule (Mercadal, 1990).
3Being able to derive all possible inferences from a set of propositions (Mercadal, 1990).
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number of alternatives to be investigated. In an effort to constrain the search in large
databases, heuristics have been employed to choose which approach would be most
feasible. Another major drawback in the use of first-order predicate calculus is the
restriction placed on the knowledge representation scheme by not allowing
relationships between predicates (i.e. assertions), beliefs, temporal relations or
statements of possibilities. Predicate calculus is a convenient representation for facts
and rules of inference, provided the domain can be adequately capture by the
knowledge engineer (or person who interacts with a domain expert in order to acquire
relevant facts and relationships among facts to be built into an Al system).

2.3 Expert Systems

The logic representations discussed so far have consisted of a finite set of formally
defined formulae and statements. This has proved restrictive for application to real-
world applications, where constraints can be ill-defined or non-existent. This
deficiency resulted in the development of a variety of schemes generally known as
expert systems (also known as expert systems or knowledge based systems) (Barr and
Feigenbaum, 1981; Tanimoto, 1987), which are computational models used for
implementing search algorithms and for modelling human problem solving. A typical
system would consist of a set of production rules, a working memory, and a control
cycle. The production rules are cast as a group of condition-action pairs of the form "If
this condition holds, then this action is appropriate.” Their actions are specifically
designed to alter the contents of the working memory, which holds a world model
(description of the problem) in a buffer-like data structure. The control structure of a
expert system operates on a subset of the working memory for conflict resolution,
identifying conflicts between the real and current worlds, and effectively selecting the
production rules to be executed one at a time.

For example, an expert system may hold in its working memory a representation of
the environment, part of which includes the statements {Sonar(active), Target(nil)}. This
part of the world description may be manipulated by a number of production rules
such as if sonar contact, then target located.

Expert systems are most often used in Al programs to represent a body of knowledge
about how people do a specific task. The inherent disadvantages of expert systems is
that their strong modularity and uniformity result in a high inefficiency in problem
solving. Although situation-action knowledge can be expressed naturally this way,
algorithmic knowledge cannot, making the control logic difficult to follow. Also, the
application-inspired design tends to make such a system very problem-specific. Three
types of implementation of expert systems are described below.
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2.4 Frames

* Frames (or schema) are used to group information about particular objects and

situations. A frame can be viewed as a static data structure used to represent well-
understood, stereotyped situations, with the inter-relationships of objects represented
as slots in a frame, and values of the properties stored in the slots. An interesting
feature of a frame is its ability to determine whether it is applicable to a given situation
and, if not, to transfer control to a more appropriate frame. Each individual frame can
be viewed as a data structure, similar in many respects to the traditional record, that

contains stereotyped entities.
For example, in a frame-like language a submarine may look like this:
Generic SUBMARINE Frame

Description: Vessel, Boat.

Class: Delta, Collins.

Alliance: Friend, Foe, Neutral.

Type: SSBN, SSK.

Sonar-Contact Frame

Description: Vessel.

Class: Delta.
Alliance: Foe.
Type: SSBN.

Although research into frames is continuing to find new applications, it is unlikely that
they will have much application to MCM activities, since such well-defined problems
are generally already treated by proven algorithms.

2.5 Semantic Networks

The semantic network takes a set of logical predicates and represents them graphically,
with nodes corresponding to facts or concepts, and arcs (or links) in the graph instead
of predicates to indicate relationships. An algorithm for reasoning about associations
within the domain then simply needs to follow the links. In addition, semantic
networks implement inheritance, i.e. certain links in the network indicate class
membership and allow properties attached to a class to be inherited by all members of

the class.

For example, the following simple semantic net represents the statements a Delta-class
vessel is a submarine, and a submarine is capable of underwater travel.
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Submarine

lCapability
Subset

Underwater-movement

Delta-Class

3. Reasoning Under Uncertainty

One feature that all of the schemes for logical inference have in common is the need
for a complete and accurate world picture. Such systems apply universally valid rules
to absolutely certain facts to deduce more facts of absolute certainty. This requires a
model of all objects and the rules governing every possible interaction between them.

In the real world, complete information about the environment is generally
unavailable. One must therefore take into account the varying degrees of uncertainty
inherent in any particular environment, and make the best possible decision with the
evidence available.

There are many different functions that a method of reasoning under uncertainty may
serve, for example:

+ representation of degree of belief,

+ evaluation of the strength of an argument,

+ application of rules of general but not universal validity,

+ inference based on uncertain, incomplete, or qualitative concepts.

The consideration of such issues has led to the development of a number of schemes
for uncertain reasoning, and some of the more significant are discussed in the following
section.

3.1 Statistical Inference

Statistical inference (Davis, 1990; Flachs, Jordan and Carlson, 1988) is one of the
simplest forms of uncertainty reasoning, being based on the primary statistical concept
that a population of events may be adequately represented by a sub-set of itself. In
making this assumption, it is important to be able to ascertain whether information

11



DSTO-TR-0279

12

available represents a significant event to within a specific confidence level. Statistical
reasoning is well suited to this, and hence is used in radar tracking and pattern
recognition or classification, such as the example in Appendix A.

This technique is clearly useful when precise probabilities for the test and null
hypotheses (in this case, detection and false-alarm probabilities) are known (as shown
by its application to the fusion of sensor data in Appendix A). It does not appear to be
usefully applicable to less structured world models.

3.2 Probabilistic Inference

Although predicate calculus is a widely accepted form of knowledge representation
and includes inference procedures representing a form of logical deduction, in practice
human reasoning uses terms such as probably, usually and occasionally, etc.
demonstrating that its patterns are intrinsically probabilistic. This is not to say that the
underlying logic of such patterns cannot be axiomised. In fact, probability can be
viewed as a generalisation of predicate calculus, where the truth value of a
proposition, given some evidence, is no longer a Boolean value, 0 (false) or 1 (true),
but is generalised to be the real interval between 0 and 1, probability in this context
being a measure of belief in a proposition. In probabilistic inference (see Appendix B) all
relevant inference paths that connect evidence to hypotheses of interest must be
examined and combined, in contrast with predicate calculus, where it is sufficient to
establish a single path between the axioms and the theorems of interest.

In many real-world scenarios, uncertainty methods that are Bayesian based will
require the use of some probabilities that are not available and must be estimated. If
the sample space of the probabilities is well understood, then the estimation theory
can be matched to give estimates close to the true probabilities. However, one must
always realise that these are only estimates and hence will contribute to the degree of
uncertainty in the final decision made. It follows that, Bayesian statistics are most
useful in drawing conclusions from the behaviour of a system where the probabilities
of events are well understood, for example, robot control and sensor fusion.

3.3 Evidential Reasoning

In a system that is uncertain or ill-defined, a single body of evidence (BOE) may give
the degree to which any one proposition should be believed. However the precise
degree of belief that should be accorded every environmental proposition cannot be
calculated. The amount of ignorance a BOE contains is hence an important component
in the reasoning process. It is for this reason that Bayesian point probabilities are often
an inadequate form of reasoning from evidence. The requirement that each
probability be assigned a precise value in Bayesian theory leads to confusion as to
whether a low probability implies that there is no particular reason to believe that this
BOE is true, or that there is good reason to believe it is false. In Bayesian theory, this
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form of uncertainty can only be represented by a second order probability (i.e. the
probability that the first order probability value is true).

This confusion can be avoided by the implementation of evidential reasoning, a set of
techniques based on Dempster-Shafer (D-S) theory, which is a mathematical theory of
evidence conceived by Dempster (1968) and further modified by Shafer (1976). Being
a departure from classical probability theory, D-S reasoning uses information that is
typically uncertain, incomplete and error-prone. D-S theory maintains the association
between the measure of belief and disjunctions of events rather than forcing
probabilities to be distributed across a set of possibilities. The result is that one need
no longer assume that all data are available and being utilised. Dempster-Shafer
theory is a way of capturing both the first and the second order information using
only first order numbers.

Shafer [1976] writes, "the additive degrees of belief of the Bayesian theory correspond
to an intuitive picture in which one's total belief is susceptible to division into various
portions, and that intuitive picture has two fundamental features. First, to have a
degree of belief in a proposition is to commit a portion of one's belief to it. And
secondly, whenever one commits only a portion of one's belief to a proposition, one
must commit the remainder to its negation. The obvious way to obtain more a flexible
and realistic picture is to discard the second of these features while retaining the first."

Because evidential reasoning is considered highly relevant to MCM decision making,
it will not be described in this brief summary, but is the subject of Appendix C.

3.4 Fuzzy Logic

Another approach to handling imprecision in decision making is through the concept
of fuzzy sets, with their extension to fuzzy logic (Zadeh, 1965, 1983). (This latter term is
unfortunate, but too well established to be changed - fuzzy logic is not fuddled
thinking, but clear thinking about imprecise concepts.) Fuzzy sets were developed in
order to handle linguistic variables (or predicates); for example, an observer might refer
to the weather conditions as "fairly windy", and this may be all the information
available. It would clearly be unreasonable to assign either a precise value of wind
speed, in metres per second, to such a variable, or to assign a given range of speeds.
Further, it may be necessary to build into a logic system condition-action clauses like
"if the weather is very windy then sonar detection becomes quite inefficient". It would be
an undesirable and unconvincing algorithm that estimated mine-detection probability
as, say, 50% at wind speeds up to 10 m/s, and as 10% for all other speeds (including,
e.g. 10.01 m/s), which would be the case if one assigned a precise boundary to the
speeds corresponding to windy, and a precise value to the descriptor efficient.

In traditional, or crisp, set theory, an object either belongs in a set, or it doesn't. Thus,
weather with a given wind speed is either a member of the set windy, in which case it
has a membership value of 1, or it is not a member, and has a membership value of 0.

13
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In fuzzy set theory and fuzzy logic, this membership value is replaced by a membership
function, in the real interval 0 to 1, which describes the extent to which an object
belongs to the set. (The membership function is not the same as the subjective
probability of Bayesian inference or the degree of belief of Dempster-Shafer theory,
although, in some ways, it resembles both.) Thus, an object may have non-zero
membership functions in both a set and its complement, e.g. windy and not-windy (or
calm). 1t then becomes possible to handle compound linguistic concepts, such as "not
windy and not calm”, which have meaning in normal thinking but not in crisp set
theory. Extension of this concept to the set-theory representation of condition-action
clauses effectively eliminates discontinuities of the type referred to in the previous
paragraph.

Dempster-Shafer theory and fuzzy logic have a degree of similarity, in that they are
both used to represent uncertain and conflicting information. However, Dempster-
Shafer theory deals primarily with the combination of information from different (and
possibly conflicting) sources, whilst fuzzy logic deals with imprecise measurements
and qualitative concepts. As with Dempster-Shafer theory, fuzzy logic will be
considered later, in Appendix D.

3.5 Probabilistic Logic

Probabilistic logic, developed by Nilsson (1986) is a semantic generalisation of
ordinary first-order logic. [Each proposition of interest is given a truth value
representing the probability that it is true, and a set of possible worlds is established
(i.e. if there were one proposition, then there would exist two possible worlds, one
where the proposition is true and the other where the proposition is false). These
propositions can be true in some worlds and false in others, as long as they are in
different combinations, and each possible world must contain a unique and consistent
set of propositions. This would imply that, if there were L propositions, then the
number K of possible worlds could be as high as 2L.. However, there are typically
fewer than this, as some combinations of true and false propositions are inconsistent.

Nilsson uses a matrix notation for the representation of probabilistic logic. In a
simple situation with point probabilities, the relationship between the L-dimensional
column vector IT representing the probabilities of the propositions, the K-dimensional
column vector P representing the probabilities of the various worlds, and the L % K
matrix V representing the truth values for the propositions in these worlds is simply

II=V.P

Nilsson extends this concept to reasoning with uncertain beliefs, when the
probabilities of the possible worlds are not usually given, and one must determine
them from the available information. Using a base set of beliefs with associated
probabilities, we can deduce a new proposition and its associated probabilities. We
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now know V and II and can solve the matrix equation for P. Nilsson terms this
operation probabilistic entailment and uses it to calculate the probability of a
proposition being true or false and the probability of an operator being in a given
possible world. However, this technique does not appear to be strongly relevant to
MCM operations, since it deals with beliefs and probabilities rather than condition-
action systems.

3.6 Artificial Neural Networks

In cases where it is not possible, for reasons of complexity or lack of knowledge, to
describe the behaviour of a system of interest as an explicit function of the
contributing factors, it is frequently convenient to use a simple approximation to the
relationship. In the past, because of the sheer weight of computation involved in any
non-linear least-squared-error type of calculation, the preferred method has been
multiple linear regression. With the relatively recent advent of artificial neural networks,
however, it is now possible to describe non-linear systems in a convenient way. This
is not, strictly speaking, an Al technique, since it embodies only information on effects,
rather than the mechanisms that cause them, but it is so useful a component of
intelligent systems that it is described in more detail later, in Appendix E.

Examination of data from recent trials in Jervis Bay (Neill, 1991) reveals that the
measured navigational accuracy of a sonar platform correlates with system and
environmental variables (such as ship speed, wind speed, wind direction, sonar
orientation etc). A predictive model linking system and environmental data to
navigational accuracy could conceivably be used to flag unfavourable operating
conditions, leading to possible postponement of the mission or appropriate
operational changes (resulting in a saving in operating costs).

The results of a recent study, which investigated neural networks as a tool in
mathematical modelling, suggests that the hover radius of the MHI minehunter could
be modelled as a function of system and environmental variables (Benke 1993). A
correlation coefficient of 9% was obtained between predictions and measurements
when applied to new data, as opposed to 56% by multiple linear regression. The
approach was shown to be effective for modelling the quantitative effect on
performance of different human operators.  Other applications include the
identification and classification of ship and mine signatures, and as an integral part of
a mine logic system.

15
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4. Other Techniques

The techniques outlined in this section are taken from Al and pattern recognition.
They are grouped under a catch-all heading as they are less likely to be applied to
MCM problems (as described in section 1.1).

4.1 Updating Decisions

The following is a brief description of two mechanisms that are used for revising a
model of a universe of discourse, rather than setting up a new model. These are
considered to be of marginal interest in the early development of an MCM application
of artificial intelligence.

4.1.1 Nonmonotonic Reasoning

The most compelling reason for using first-order logic as a framework for representing
and combining information is that logical inferences based on unambiguously true
statements never result in invalid conclusions. The most significant disadvantage is
that it cannot effectively accommodate uncertain, incomplete or inconsistent
information. A nonmonotonic reasoning (NMR) system (McDermott and Doyle, 1980)
handles uncertainty by making, at each decision point, what is believed to be the most
reasonable assumption in light of the available evidence. If, at a later time, an
assumption is found to be erroneous, because of either new evidence or the discovery
that the assumption led to an impossible conclusion, the system changes the
assumption and all the conclusions that rely on it. Thus, in contrast with first order
logic, the number of possible statements from a set of assumptions does not
necessarily grow monotonically with the addition of new information. Since
information can be retracted in NMR systems in the light of new information, it is
important to keep track of all deduced knowledge; when an assumed fact is
withdrawn, all conclusions dependent on it must be re-examined and possibly
withdrawn.

4.1.2 Maximum Relative Entropy

Maximum relative entropy inferencing (also known as cross-entropy inferencing or
minimum-information updating) is a method for updating a probability distribution in
the light of new information on currently defined propositions (Jaynes, 1982).
Maximum entropy is a dynamic theory where previously mentioned theories are
static; a dynamic theory is concerned with how a belief should change in the light of
new information, while a static theory is concerned with consistent conditions for
degrees of belief at a given time.
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4.2 Classification

The following comprises a brief description of three methods of classifying objects or
events on the basis of uncertain information. They are included mainly for
completeness, and it is not considered that they will have significant application to
foreseeable MCM problems.

4.2.1 Cluster Analysis

Cluster analysis (Everitt, 1977) is generally used for classification analysis based on
multi-parameter similarity. This is achieved by sorting observations into natural
groups based on the estimates of pair-wise and cluster-wise similarities. Observations
are cast into a non-dimensional form, and assembled into a multi-parameter space,
where one of a variety of techniques is used to create a resemblance matrix defining the
similarity between each pair of objects (or events).

4.2.2 Figure of Merit

Figure of merit calculations are similar in principal to cluster analysis, but differ in
detailed application. They are used by LOCE (Limited Operations Capability Europe)
(Llinas, 1989) to fuse information from electronic intelligence reports, photo-
interpretation, target data messages, and free text. This involves calculating the
degree of similarity between two entities using their attribute vectors. The LOCE
system uses a self-correlation process involving location, frequency, pulse width,
pulse repetition interval and time, followed by a cross-correlation process to associate
new data with higher level entries.

4.2.3 Templating

Templating is often used in decision fusion by first establishing preset logical or
numerical criteria to determine if a certain set of observations supports an event or
conclusion. One or more parametric or nonparametric observations is collected,
possibly over a period of time, and, using weighted thresholding, Boolean templates,
and hierarchical event profiling, a declaration is made of whether an event or object
matches an expectation.

17
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5. Discussion and Summary

5.1 General Comments

Examination of the naval literature (see, for example, Pollaers 1985, Hartman 1988)
indicates that the principal aims of artificial intelligence in maritime operations
include:

+ the selection of weapons options to produce maximum effect on target,
+ the selection of tactics to produce maximum effect on the battlefield,
¢ the facilitation of naval warfare mission planning,

+ the alleviation of operational problems due to manpower shortages and frequent
staff re-assignments,

+ the enhancement of multi-sensor integration to reduce information overload,
and

+ the improvement of reaction times against missile threats.

A number of techniques for dealing with uncertain and incomplete information have
been investigated in this report. Many of these techniques are treated in the Al
literature, and involve statistical and probabilistic inference, evidential reasoning,
fuzzy logic, artificial neural networks, and nonmonotonic reasoning. Some
approaches, however, such as maximum relative entropy, cluster analysis, and figure
of merit, originate from the pattern recognition literature. All of these approaches are
well suited to specific problem types. Hence, this report does not evaluate these
approaches, rather it investigates their appropriateness to specific MCM applications.

The investigation has highlighted evidential reasoning, fuzzy logic, and to a lesser
extent, artificial neural networks, as they were deemed by the authors to demonstrate
facilities most useful to particular MCM problems. Evidential reasoning can be used
for representing uncertain and incomplete information, and provides a powerful range
of operation for manipulating bodies of evidence. An appropriate application of
evidential reasoning in the MCM domain would be involve the filtering and
processing of the large quantities of information available to an MCM commander.
Evidential reasoning can be used to combine bodies of evidence, emphasising
common attributes, and de-emphasising contradictory information. It can then
provide the MCM commander with a detailed or summarised report on the
information (depending on the individuals requirements). It is envisaged that
evidential reasoning would best serve the MCM domain as an aid to operator by
arranging information in this way, not replacing the operator in the decision process.

Fuzzy logic deals with a different kind of uncertainty from that appropriate to
evidential reasoning - the uncertainty here is mainly in the quantitative values of
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factors, rather than in confidence in the existence of specified conditions. Fuzzy logic
can also handle relationships represented in terms of vague concepts. It is appropriate
for presenting information derived from fuzzy or ‘crisp’ algorithms where the input
data are inherently inexact, and it can therefore be used for the development of tactical
decision aids. As an example, the decision as to the detailed tactics (or ‘stages’) to be
employed by clearance divers in searching for mines is made using a crisp algorithm
that has among its inputs a number of very approximate physical measures and some
rather arbitrary thresholds. The paradigms used by fuzzy logic are ideally suited to
following through the algorithm and presenting to a decision maker confidence in the
applicability of each tactic. The related field of fuzzy control systems is a mature
technology, suited to emulating the behaviour of experienced operators in activities as
diverse as focusing cameras and steering power boats. This should have many
applications in MCM operations, particularly where it is desirable to replace an
operator by an automatic controller under hazardous conditions.

Artificial neural networks are best suited to classification problems in domains where
good training data are available. The parabolic-exponential model fitted to the lateral
range function of a sidescan sonar by regression analysis is a sufficient approximation
under some operational conditions. There may be cases, however, where consideration
could also be given to a completely distribution-free method, such as that offered by
the use of an artificial neural network. The advantage in this case is the fact that no a
priori model is assumed for curve fitting and the approach is therefore more
generalised. The development of an autonomous cueing aid for sidescan sonar during
route surveillance can also be enhanced by using a target classifier (neural network) to
process the data from the outputs of tuned spatial filters.

The solution of MCM problems, or the provision of advice on the likely effectiveness
of possible courses of action, is typical of the sort of application for which expert
systems, are well suited. Expert systems in their traditional forms have sometimes
experienced difficulty in expressing explicitly the expression of algorithms, and also
accounting for uncertain, missing or contradictory data. Advances in the
incorporation of fuzzy logic into expert systems have led to considerable improvement
in the handling of approximate or linguistic data, and the more recent application of
artificial neural networks to expert systems has allowed for the implementation of
algorithmic knowledge in a real-time manner. Problems with missing or contradictory
data do not yet appear to have been solved within expert systems, although evidential
reasoning has existed for some time as an appropriate tool for handling such data.

It appears that the most likely form for an Al system to take, for the solution of MCM
problems, will be one including fuzzy algorithms and neural networks, and that the
incorporation of evidential reasoning in such a system would be worth investigation.

19
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5.2 Specific MCM Applications

As discussed above, the clearance diver operates on estimates of environmental
conditions such as sea-bed type and underwater visibility. Such information is used to
predict the consequences of each of several possible tactics in terms such as sea-bed
coverage rates for a given clearance level, and a choice of method is made according to
criteria that depend on the circumstances, e.g. minimum risk to the divers or
maximum clearance level. In short, a predictive model of the performance of a
clearance diver would contain little in the way of algorithmic analysis, but a significant
amount of qualitative rule-based decision making.

The operation of minehunting is a combination of predictable manoeuvering and
stochastic processes. The MCM vessel will usually adhere to a planned route, but may
diverge from this to deal with any mine or MLO that is detected, then return to its
original course. Since the disposition of mines in a hostile minefield is not known, it is
difficult to analyse likely behaviour other than by a probabilistic model, such as a
Monte Carlo simulation, using multiple runs to achieve reasonable estimates of
probabilities. There are, however, algorithms, tables and nomograms available for the
planning of operations.

Minesweeping and route survey resemble each other in that they employ similar
procedures, and indeed sometimes make use of the same vessels. These operations
are eminently predictable, and both consist of one or more scans in a regular pattern
over a pre-selected area. Under normal conditions, they can be planned in advance
using well understood computational aids.

MCM vessels will often be operating under difficult conditions, including adverse
weather and hostile activity. Such conditions are likely to result in vital data inputs
being lost. For example, a route-survey vessel may rely on short-range sonar to
determine the relative position of a sidescan sonar tow-fish. If the short-range sonar
becomes inoperative due to accidental damage or hostile activity, the position of the
tow-fish may need to be input on the basis of an inaccurate technique, or even a rough
estimate. Under conditions where a great deal of the necessary information is lost, the
vessel commander may have to resort simply to using a best estimate, based on
previous experience, for deciding on detailed tactics. The algorithm for deciding
tactics may thus be reduced to what is effectively a qualitative rule-based decision.

It can be seen from the above brief summary that MCM operations always occur
under conditions of some uncertainty, and, at least in the case of clearance diving, the
choice of tactics may be made using data that can never be better than approximate.
In bad weather or combat conditions, uncertainties for all operations may be
compounded by the loss of normally accurate quantitative information, such as
navigational data. Whilst statistical and probabilistic methods offer a means of
overcoming some of these difficulties, Al techniques would seem to have considerable
potential for assisting decision making by using all of the available information, no
matter how sparse, inaccurate or inconsistent. Further, Al techniques could possibly
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be used for the continuous revision of assumptions responsible for tactical decisions,
and for evaluating possible changes in tactics.
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Appendix A: Statistical Inference

As an example of statistical inference, consider the case where a mine detects active
sonar transmission from a passing vessel, and it is necessary to determine whether the
sonar transmitter is of Type A or Type B, which are known to differ in pulse repetition
interval (PRI). However, the probability distributions, pa(i) and pg(i), of the sonars
operating on particular nominal PRIs overlap as shown in Fig. A.1 Given that we
observed a PRI of i,, we wish to compare the two hypotheses Hy (the sonar is of
Type A) and H; (the sonar is of Type B).

Probability
Density

Pulse Repetition Interval (i)

Figure A1:  The overlapping pulse repetition interval (PRI) probability distributions
for sonars of types A and B.

The strategy is to select a critical value, i., and to make the assumptions

i, <i, = H,(the sonar is of type A)
i, >i, = H, (the sonar is of type B)

Hence the probabilities of incorrect identification are:
a = P(i, <i |H,), the probability of selecting H , given that the true situation is H,
B=P(i,>i |H,), the probability of selecting H, given that the true situation is H,,

where o and P are the shaded areas shown in the figure.
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From this, it is possible to show that, if the expected number of occurrences of types A
and B are n5 and np respectively, and that the costs of single failures to identify the
types are Ca and Cg, then the expectation for the total cost, Cr, of all failures is given
by:

C,=Bn,C, +anyCy (A.1)
and that this will have a minimum value when i satisfies the equation:
n,Copa(i,) = ngCypy (i) (A.2)
The solution of this equation for Gaussian probability-density functions is trivial.

In another application, Chair and Varshney (1986) have considered a problem in data
fusion (the combination of data from different sources), where sensors make decisions
independently of each other before sending their results to a central fusion module for
correlation. An optimal fusion rule is derived for the likelihood ratio (LR) test, the
ratio of the probability of some pool of evidence being true, given a certain hypothesis,
to the probability of it being true given the negation of the hypothesis. This turns out
to be a weighted average of the various sensor decisions, where the weights are
derived from the individual sensor false alarm and detection probabilities. This
approach requires exact knowledge of the a priori probabilities of the test hypothesis,
or the assumption that all null hypotheses are equally likely.

Thomopoulos, Viswanathan and Bougoulias (1987) derive an optimal decision scheme
that has each sensor making an independent decision based on an LR test, and the
fusion centre making a further LR test during correlation of the decisions. This
information fusion algorithm is applied to two systems, the first where various
sensors transmit their decisions only, and the second where they transmit both the
decision and the degree of confidence with which it was made. If all sensors are
operating under the same conditions, this test will have a higher detection probability
than that of the individual sensors; however, in the case of disparate sensors, the
system performance is dependent on how different the operational conditions of the
sensors are from each other.
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Appendix B: Probabilistic Inference

Bayes' Rule of conditioning (Tanimoto, 1987) is the fundamental means of calculating
the probability of a hypothesis using measured supporting evidence. Although it is
formally defined using a priori probabilities, it is often used to upgrade beliefs in a
hypothesis based on new evidence. Bayes' Rule simply states that if there is an
exclusive and exhaustive set of hypotheses (causes) for an event that has occurred,
then the probability that a particular cause was responsible is proportional to the
product of the probability of that hypothesis being true and the probability of the
event occurring under that hypothesis, that is

P(A|B) P(B}}

Y P{A1B,} P(B,} (B.1)

P(B,1 A} =

where P(X] is used for the overall probability of X occurring, and P{X | Y} is used for
the probability of X occurring given that Y has occurred.

In practice, Bayesian theory is applied by first selecting one event whose outcome is
precisely known, and then, using the rules of the theory, calculating the desired
probabilities. For example, if A is an observable event, and {By, By,..., By} is a set of
mutually exclusive, exhaustive hypotheses, then one could calculate the probabilities
P(B} and the likelihood P{A | B} for alli. One can then use Equ. B.1 to calculate the
predictive probability P{A }. Similarly, if sufficient information is available to calculate
any two of these probabilities, Bayes' rule can be used to find the third.

As an example, in the detection of a mine-like object through route survey, the
performance of the sensor (i.e. the combination of the sonar and any associated target-
detection algorithms), can be described by a probability matrix of the type shown in
the figure below, where P(D; | O;} represents the probability that a declaration of
(interpretation as) an object of type i will be made, given that the actual object is of
type j. This might be, for example, P{rock | Mk-84 mine}.

Actual Object Type
00 0, L 0,
Declaration D, |P(DjlOy} L L L
of Typemade D, M o)
by Sensor M M 0]
D,| M P(D,10,,}

In addition to the probability matrix, the Minewarfare Pilot Officer, or other
interpreter, will have a priori information, from previous surveys, intelligence reports
etc., on the actual probabilities, P{O}}, of the occurrence of given object types. The



DSTO-TR-0279

Bayesian equation, Eqn. B.1, can then be used to combine the probability matrix and
the a priori probabilities to give a posteriori probabilities such as P{O; | D}, the
probability that the object is of type i, given that the sensor has declared it to be of type

]

Similarly, information provided by a number of sensors can also be fused using a
multi-variable form of Bayes' equation (Pearl, 1988).

When the necessary probability values for computation are not known, the principle
of insufficient reason can be applied. This is simply explained by Garvey (1987): "If
the probability of a disjunction of events is known, but the probabilities of the
individual components are not, and there is no particular reason to expect that one
event is more likely than any other, then the principle of insufficient reason dictates
that equal probabilities, totalling to the original probabilities, be assigned to the
individual components". Alternatively, a more sophisticated approach available is the
maximum entropy principle, which selects probability values by maximising the
entropy (or the degree of disorder) of the assignment. This corresponds to making a
minimal commitment to the estimation of unknown probabilities (Pearl, 1988).

The usual formulation of Bayes' rule, given by Equ. B.1, can be used to obtain the
odds-likelihood ratio formulation, by dividing the rule for one hypothesis by the rule
for a second hypothesis. This form is often useful when subjective probability
judgments (being made by a human) are required, as it is often more intuitive for an
assessment of a likelihood ratio to be made, than for a straight conditional probability
judgment (Cohen, Schum, Freeling and Chinnis, 1985).
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Appendix C: Evidential Reasoning

Evidential reasoning in general, and Dempster-Shafer theory in particular, is used to
assess the effect of all pieces of available evidence on a hypothesis, making use of
domain-specific knowledge. A propositional space called the frame of discernment is
used to define a set of basic statements, exactly one of which may be true at any one
time, and a subset of these statements is defined as a propositional statement. For
example, in the case of an intelligent ground mine, the frame of discernment, 64, might
represent every type of vessel that could influence it, i.e.

04 ={ay.,as,.....ap} (C.1)

where one of the basic statements 4; might be "the vessel is a Delta class submarine”. A
propositional statement A; might be "the vessel is a submarine", that is, the proposition
is the subset of 84 containing all 4; that nominate different classes of submarine.

In much the same way that one may, given sufficient information, compute
probabilities (summing to unity) for all possible combinations of situations of interest,
one may assign values (again summing to unity) to one's beliefs in all possible
propositional statements in a frame of discernment; these values, my4(A;), are known as
masses, and the process is called a mass distribution. This may be written as

> m(A)=1 (C2)

AcB,

where the domain of A; is the set of all possible subsets of 8, i.e. the power set 204,
Any proposition assigned a non-zero mass is called a focal element, and the mass
assigned to the empty set ¢ is zero, since, by definition, at least one proposition must
be true (although a proposition could be that nothing is happening).

Information about belief in a hypothesis A; is contained in what is called the evidential
interval. In order to define this, we must first define the support, Spt(A;), which is given

by

Spt(A,) = Y, m,(A) (C3)

AcA

that is, the support for a hypothesis A; is the sum of the masses of all propositions that
are subsets of 4; (including A; itself). The evidential interval is then easiest illustrated

by:
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PIs(A;)

B
- SPICA) G4 o SPue, A

0 Mass 1

Here, Pls(A;) represents the plausibility of A;, that is, the degree to which the evidence
fails to support its negation, and the difference between support and plausibility
represents the residual ignorance, or uncertainty, Ug (4j). This concept is usually
represented by [Spt(A;), Pls(A;)], where actual numerical values are used within the
square brackets.

The assignment of values for the masses ma(4)) is, of course, problem dependent (and,
in many cases, rather arbitrary), and may be time-dependent. However, once they
have been assigned, masses for different times, knowledge sources or frames of
discernment may be combined according to simple and credible rules to allow the
evidential intervals for various propositions to be computed in a way that
encompasses all of the evidence available. These rules will not be specified in detail in
this report; instead, a very simple example will be worked through numerically.

Suppose information is sought from two completely independent knowledge sources
(i.e. informants), on whether a particular vessel is friendly or unfriendly. The first
source states that 50% of the evidence points to it being friendly, 20% points to it being
unfriendly, and the remaining 30% could be interpreted either way. The second
source gives estimates of 40%, 40% and 20% respectively. One would probably say
that these data are largely consistent between informants, but for each informant
contain significant self-contradiction and uncertainty. The question is: can we
improve our knowledge by combining the data? The answer lies in Dempster's rule of
combination, which is illustrated by the diagram below.

29
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m, {F}

m, {U}

m, {F, U}

0.4 04 0.2
mj (F} my (U}  mi{F,U)

The possible objective situations, friendly or unfriendly, may be specified by a two-
member set 84 ={F, U}. Since the beliefs of each informant can be expressed as
divisions of a unit line (the vertical and horizontal axes respectively), it seems
reasonable to express the combined beliefs of both informants as divisions of a unit
square, as shown. We consider now a single division, the top right-hand corner of the
square. This represents a measure of our combined belief that has been assigned by
one informant to {F}, or friendly, and by the other to {F, U}, or indeterminate (the
description vacuous is commonly applied). The only proposition to which we could
reasonably assign this portion of our belief is the widest proposition consistent with
both of these subsets, that is the intersection of the two subsets, {F} n {F, U} = {F}. This
is indicated by the set description superimposed on the division.

The same sort of argument can be applied to all the divisions, as shown. We now have
the problem that some of the belief is assigned to the empty set ¢ - this represents
completely contradictory evidence to which we should assign no mass. The problem is
overcome by assigning to each proposition in the combined evidence a mass that
represents the ratio of the areas assigned to it and to all the non-empty sets. This is a
simple instance of Dempster's rule, for which the general case is:

m(A)=(01-k" Y mi(A)m}(A) (C4)
(i 14 NA;=4)
where
k=) my(A)m(A), k#1 (C.5)
(L. IANA;=2)
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We can ignore the evidential interval assigned in all cases to the vacuous proposition
{F, U}, which unsurprisingly turns out to be [1,1] (representing certainty that the
vessel is either friendly or unfriendly), and for this simple binary choice the interval
for {U} can be deduced from that for {F}. A little simple arithmetic will assure us that
the first informant implied an evidential interval for {F} of [0.5,0.8], the second
[0.4,0.6] and the combined evidence approximately [0.58, 0.67]. Have we improved
our knowledge? The most obvious result is that the residual uncertainty Uy has been
reduced, from 0.3 for the first informant and 0.2 for the second, to 0.083; the second
result is that the masses of evidence for the two elementary propositions are still not
greatly different from each other. In other words, the combination has highlighted the
essential nature of the evidence (that it is largely self-contradictory), whilst reducing
the uncertainty.

If we now follow through the same calculation, but using as estimates for the beliefs of
the two informants the sets {70%, 10%, 20%} and {80%, 10%, 10%)}, we find that the
evidential interval for {F} has changed from the two individual estimates of [0.7, 0.9]
and [0.8,0.9] to approximately [0.93,0.95]. Here, two fairly high estimates for the
likelihood of the vessel being friendly produce a very high combined likelihood, with
little uncertainty. One should, however, be sure that the estimates are independent. If
the problem had been, say, in weather forecasting, where the forecasters used the
same data (and probably learned the same rules for manipulating them), such a
combinational rule would not be appropriate.

We would expect the same sort of behaviour, for the case of independent evidence,
with less-trivial propositions and/or more informants, conditions where a casual
examination of the evidence would be much less likely to give a useful summary. It
should be pointed out here that Dempster's rule is both commutative and associative,
so evidence from an arbitrary number of sources may be combined in any order to
give the same result.

In a similar manner to the combination technique described above, plausible rules
have been developed for a number of operations on data sets. These include:

¢ Translation - the movement of information between different contexts, or frames
of discernment. An example might be where one frame refers to vessels by type
or class, and the other by properties such as displacement or magnetic signature.
This operation requires some form of compatibility mapping or matrix, to allow
one data set to be transformed to another frame for combination. The form of the
translational rules depends on whether the frames of discernment are essentially
independent, as in the suggestion above, or are different subsets of the same
frame, such as vessel type and vessel class. When the different frames represent
simply the same body of evidence at different times, this process is referred to as
projection.
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* Discounting - the modification of a mass distribution to take account of the
reliability of a source. As an example, if the source is considered only 50%
reliable, all masses are halved except that referring to the vacuous proposition
(supporting all conclusions), which is expanded to maintain the unit sum. This
allows information from sources of disparate reliability to be combined in a
meaningful way.

¢ Summarisation - simplification of a body of evidence by eliminating those
propositions for which the assigned mass is low.

¢ Interpretation - combination of the masses of evidence for and against a
proposition, to provide a measure of its truthfulness.

¢ Gisting - determination of the proposition that best illustrates the general trend
of a body of evidence. To obtain the gist, one first selects all the propositions
with the equal greatest support. If there is only one, this is the gist. If there is
more than one, the selection is narrowed to those with the lowest cardinality
(number of elementary propositions). The gist is the remaining proposition (if
there is only one), or the union of the remaining propositions.

In summary, evidential reasoning, which is a super-set of Dempster-Shafer theory, is a
formal structure for reasoning about available information that may be incomplete
and/or self-contradictory. It operates by combining all the information according to a
credible set of rules, which require estimates to be made of the reliability of the
information source, and the degree of belief that the source ascribes to each possible
proposition.
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Appendix D: Fuzzy Representations

D.1 Fuzzy Sets

In the very brief mention of fuzzy logic, above (Section 3.4), it was stated that an object
either belonged in a given crisp set, or it didn't, but that it could have an intermediate
membership in a fuzzy set. This is illustrated below, where Xwinay(v) represents the
membership of a given wind speed v in the crisp or fuzzy set windy.

1
Crisp ———»
Xunsy (V)
Fuzzy\
0
0 20

Wind Speed (v), m/s

All this tells us is that, for the crisp set, all wind speeds below about 10 m/s (the actual
figure is unimportant) would be considered not windy, or calm, whilst all speeds
above this would be considered windy. (The membership at the most important
speed, 10m/s, is not defined.) In the fuzzy set, all speeds above 20 m/s are
considered windy, but any below this have partial memberships in both the windy
and calm sets - there is no uncomfortable ambiguity at any speed.

Zadeh (1973) recognises three types of operation on or between fuzzy sets; these are

+ negation - characterised by the operator not,
¢ connection - characterised by operators like and and or, and

+ hedging - characterised by operators like very and quite.

The first two types are familiar from propositional logic (Section 2.1 above) and crisp
set theory. In fuzzy logic, as in propositional logic and crisp set theory, they have
meanings consistent with common non-mathematical usage, and these meanings tend
to the crisp-set meanings as the membership function ) tends to a step function.
Hedges, on the other hand, represent somewhat arbitrary functions that tend to do-
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nothing operations as the membership function tends to a step function, and modify
membership functions in a way that is broadly consistent with their non-mathematical
meanings. Combinations of all three types of operation give rise to composite
functions, or linguistic variables, that are derived from the original membership
functions, so that if, for example, the function windy has been defined, and calm is
defined as not windy, then there is a precisely defined membership function for not
calm but not very windy, whose values relate to those for windy in a commonsense way.

As with evidential reasoning above, this report will present in detail only a small sub-
set of the available fuzzy-set operations, in order to demonstrate that their operation is
reasonable when considered in conjunction with crisp-set theory and common usage.
Let us consider first the negation operator. In a crisp set, this changes membership
(x = 1) to non-membership (x = 0) - the equivalent with fuzzy sets is complementation
(in the arithmetic sense) so that, with the above definitions,

YWeV, XeamV)=1=% ey (V) (D.1)

where V is the domain of v (which here would be the non-negative real numbers). In
the notation usually employed for fuzzy-set theory (Kandel and Schneider, 1989), this
would appear as:

WE—W2 [y )/ v (D.2)
| 4

where Wis used for the set windy. However, at the level considered in this report, this
specialised notation will not be necessary.

Set negation is illustrated in the diagram below, where axis labels have been omitted
for simplicity. The definition of Eqn. (D.1) makes sense from two points of view; if
applied to crisp set, it produces the right answer, and the more a wind speed belongs
to the set windy, the less it belongs to the set not windy.

In crisp set theory, the connective and represents set intersection, that is, if an object
belongs to sets A and B it must belong to A B. It follows that an object cannot belong
to both A and ]A (not A), since the intersection of a set with its negation is an empty
set. In terms of membership function j, the crisp-set membership of A and B is 1 only
if the memberships in A and B separately are both 1. In fuzzy-set theory, the
equivalent operation is minimisation, that is:

VX e X, X amap(®)=min(x,x),%x;x) (D.3)
Again, the definition appears reasonable; it tends to the crisp-set definition as the

membership function approaches a step function, and it ensures that the degree to
which an object belongs in the intersection of two sets cannot be greater than the
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degree to which it belongs to either set. The equivalent for the or operator is, for
similar reasons, maximisation.

We now have the situation that an object will generally have a non-zero membership
of both a fuzzy set and its negation. If we consider this in relation to the linguistic
variable windy and not windy, this appears to make little sense. However, again
defining calm as not windy, this connective operation may be re-stated as any of calm
and windy, calm and not calm or not calm and not windy, the last making sense in
common usage. The diagram below shows how this function is derived from windy -
it is, quite reasonably, a function that has low values everywhere except near the
cross-over point between calm and windy.

Windy Calm (Not Windy)

Not Calm And Not Windy Very Windy

In discussing the meanings assigned to hedges like very, it is perhaps clearer to start
from common usage. There is, of course, no accepted quantitative definition of very,
but we would expect to find three relationships between set membership for the sets
windy and very windy:

¢+ whatever the wind speed, its membership of very windy would be less than its
membership of windy,

* for high wind speeds, both memberships would approach unity, and

* as the wind speed approaches zero, the ratio of memberships in very windy and
windy would decrease.
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For compatibility with crisp-set theory, the operation should have no effect on a step
function of unit height. There are many functions that could be applied to Ywindy to
produce Jverywindy and satisfy these requirements, and that commonly used is
concentration, which is simply the squaring of the membership function, i.e.

VV EV, XVerywindy (V) = vamdy(v) (D4)

This operation is the last of the examples illustrated in the figure above.

Fuzzy set theory, as detailed above, is essentially a descriptive tool. However, it can
be used in typicality theory to derive an expectation for the magnitude, or range of
magnitudes, for a variable, given incomplete information about its population. For
example, given reasonable interpretations of the salient words, it is possible to define
an expectation for wind speed from a statement such as "usually, the wind speed is
between 2 and 15 m/s, but for about 10% of the time it is higher, and for almost 5% of
the time it is lower". Perhaps more importantly, it is possible to check if given data on
wind speed are consistent with such a statement, for example in a rule stating if the
wind speed is not typical then ... . This is an example of fuzzy-set theory in the
interpretation of fuzzy conditional statements, as briefly described below.

D.2 Fuzzy Logic

As anticipated in Section 3.4 above, a significant reason for investigating fuzzy logic is
to allow for fuzzy inputs and outputs to condition-action clauses, e.g. "if the weather is
very windy then sonar detection becomes quite inefficient”. In order to achieve this, one
must first cast the statement in a set-theoretical form. We will do this first using crisp-
set theory, but following the example of Zadeh (1973), i.e.

IfAthenBelseC 2 AxB+(—AxC) (D.5)

where A represents a member of a set of causes, and B and C are members of a set of
consequences. Here, A % B represents the Cartesian product of the sets A and B that
is, the set whose domain is all possible ordered pairs of members of A and B, and
whose membership is true (x = 1) if and only if both members of the pair are members
of their respective sets. The symbol + here represents set union, which is possible here
because the domains of both expressions that it joins are the same. Then any member
of this domain represents a possible combination of cause and effect, and the
expression evaluates to true if that effect is a consequence of that cause. Since we
already have a representation of the union of two fuzzy sets (which is the same as A or
B), it only remains to define the Cartesian product of two fuzzy sets. By analogy with
the definition of set intersection (A and B), this is the fuzzy set in the combined
domain whose membership is the minimum of the membership values of the member
pair in their respective domains, i.e.
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V{(x,y)lx € A,y €B), X pep(x, )= min(x ,(x), % () D.6)

When Equ. (D.5) is applied to a fuzzy system, any effect can now be associated with
any cause by a membership value in the interval [0,1], which can be considered, rather
loosely, to be the probability of that effect given that cause. Where the sets of cause
and effect have limited discrete domains, this is often represented by a matrix, referred
to as a fuzzy relational matrix. Thus, given a numeric input for the cause, one may use
the fuzzy relationship of Equ. (D.5) to obtain a fuzzy set representing the possible
effects.

When the input to a condition-action clause is itself a fuzzy set, a further stage of
processing is required, somewhat analogously to the convolution of an input signal
with an impulse response to give an output signal. This process, known as the
compositional rule of inference, makes use of the max-min product, defined by:

X 5() = max  (min(X o (1), X 4ea (5 1)) D7)

where )4 4 5 Tepresents the fuzzy relational matrix referred to above. Thus, a fuzzy
input x gives rise to a fuzzy output y, which may be interpreted, or passed on to a
further decision-making step for similar treatment. The interpretation of the final
fuzzy output will depend on whether the result is required as a binary decision (yes or
no), or as the relative merits of a number of possible conclusions. In the latter case, the
set memberships of the final set represent simply the required output. In the former
case, it would be usual simply to make a decision based on which value of y is the
highest.

The final question to be answered is: why use fuzzy sets at all? The most obvious
answer is for conditions where some or all of the inputs are inherently fuzzy, as in the
example quoted in section 3.4. There is, however, another set of conditions where
fuzzy logic may be used. This is where a system has significant negative feedback, so
that approximate solutions will suffice, and at the same time the exact solutions to
some of the decisions may be known in principle, but are too difficult to compute in
real time. Such an application may not, when first encountered, seem to be justified,
since there is no real evidence that the process described above will lead to a stable
system. However, in many instances, e.g. steering a pilotless vehicle along a specified
course, the rules may be obtained by consulting with experts who have, through long
experience, discovered how to maintain a stable and accurate course, so there is a sort
of de facto stability built into the rules.
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Appendix E: Artificial Neural Networks

An artificial neural network is essentially a means of establishing a desired non-linear
relationship between a number of input values and one or more output values. In
order to achieve this, it is necessary to have a defined architecture containing
processing elements, or neurons, and a means of training the system to produce the
required output when supplied with inputs for which the correct output is known
(Rumelhart and McClelland, 1987). Probably the best known such network is the
Rumelhart back-propagation architecture, which is shown schematically below.

Output neurons

Hidden neurons

Inputs

We consider a general strictly-layered three-layer network of this type, where the
processing elements are indexed by k in the input layer, j in the hidden layer, and i in
the output layer. We also define the output of a processing element as S; if it is an
output neuron, and s; if it is a hidden neuron. A synaptic coupling (also referred to as
a connection weight) between a hidden neuron and an output neuron is given by Wj;.
Similarly, a coupling between an input node and a hidden neuron is given by wjx.
Finally, the threshold potential (also referred to as a bias) for an output neuron is
given by V;, and for a hidden neuron by v;. The equation of state defining the network
is (Muller and Reinhardt, 1990):

S;=f(h)
where
b= W, ;s)=-V, (E.1)
j
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with a similar expression for s; The non-linear transfer functions (also known as
activation functions), f(), are required to be continuous, differentiable and
monotonically increasing, examples of which include:

£ (k)= (1+exp(-Bh)"
and

f (k) = tanh(Bh,) (E.2)

During the training phase, the network iteratively adjusts weights, w, and bias values,
v, to minimise the error function, D, between target values, {, and output values, f(.),
for all classes, where

D(W,.'j,V‘.,wj,k,vj)=%2 Z(C? —f(h;"))z (E.3)
s i

In the Rumelhart back-propagation model (the most common and well established),
parameter adjustment, such as Wy,1 = Wy + dw, in the case of the connection weights, is
generally achieved by application of a gradient descent procedure of the general form
Wns1 = Wy - EED(wy). In the output layer, the parameter increment is proportional to
the magnitude and direction of the derivative of the error function, and takes the form

an?

oW..=-¢ oD =
oW, ;

W oW,

ij

ey (G4 - FH)F /() E4)
N

with similar rules for V;, wjx and v;.

The error minimisation process thus involves the propagation of the output error
deviation backward through the network. Details relating to the numerical
implementation of back-propagation networks, including advice on scaling factors and
extensions to the basic approach, can be found in Rumelhart and McClelland (1987),
Muller and Reinhardt (1990), and Simpson (1990).

The principal application of artificial neural networks in Al is for the representation of
objective causal relationships between a number of input values and one or more
output values. Clearly, this would not be appropriate in cases where the relationship
is well-known and simply calculable in real time. However, this is not always the
case; it may take hours of computer time to calculate a known relationship, or the
relationship may be known only as the result of experimental observations. In such
cases, the parameters of a network may be trained to match a representative sample of
calculations or observations, and the network then used as a simulation of the
relationships. One subset of such relationships that is of particular interest is
classification, where each output may represent a particular conclusion from the
inputs, and all outputs go to zero except this, which goes to its maximum value. An
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example of this type of classification is the deduction of ship type by underwater
weapons on the basis of measured signatures.

One reservation that must always be borne in mind is that artificial neural networks
do not contain intelligence in the sense of being based on models of the process
involved - extrapolation outside the training area, or small pockets of aberrant
behaviour not sampled within the area, can lead to wrong conclusions. However, they
are extremely useful for multi-dimensional interpolation, and for limited extrapolation
of well-behaved functions.
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Appendix F: Glossary of Terms Used in this Report

The following consists of a set of terms from this report, each accompanied by a non-
technical description (rather than an exact definition). References to other descriptions
within the glossary are in bold italic. This Glossary has been conceptually clustered
according to functional relationship.

Fundamental Al

Axiomise Represent as a set of sentences in first order logic.

Combinational Relating to all possible combinations of relevant
information.

Condition-action statement A logical rule of the form "If this condition holds, then
this action is appropriate, else the other action is
appropriate.”

Conditional statement Same as condition-action statement.

Connective Used to describe how information should be
combined in a condition-action statement. Usually
and, or or not.

Disjunction A series of propositions, one of which must be true in
order for the overall proposition to be true. Also
applied to the or connective.

Domain specific Relating to a particular problem or class of problem.

If-then-else rule Same as condition-action statement.

Inference The use of rules of logic to draw conclusions from
given information. The process of deriving new facts
from old facts. '

Logical inference The drawing of conclusions where the rules of the
problem and all input data are accurately known.

Null hypothesis The default hypothesis against which other
hypotheses are tested.

Parametric observation An observation corresponding to a physical
measurement.
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Predicate

Predicate calculus

Production rule

Production system

Propositional logic

Quantifier

Record

Resolution

Semantic network

State transition network

A statement about an object that, when applied to a
specific argument, has a value of True or False.

An extension of propositional logic that allows for the
description of objects that make up a proposition, and
for reasoning about both the objects and the
propositions.

One of the rules in a production system, typically in
the form of a condition-action statement.

A production system is a program which includes a
body of knowledge (knowledge base) and an inference
engine.

Classical logic, which assumes that the problem solver
has full information about input conditions and about
the rules for handling information.

In predicate calculus, an operator such as for all, or
there exists, used for making general statements about
elements of a set.

A set of related information that can be treated either
as a single entity or as a number of fields.

The underlying search and inference strategy of logic
systems. Resolution is used to determine the truth of
an assertion in logic systems free from contradictions.

A graphical representation of facts and relationships
between them.

Similar to a semantic network, but with emphasis on
transitions rather than relationships between states.

Artificial Neural Networks

Activation function

Artificial neural network

A non-linear relationship between the weighted sum
of inputs to a neuron, and the output from the neuron.

A computer simulation of loosely based on the brain
which consists of at least one neuron and synapses.
The neuron has a activation level and a transfer
function. The synapses are the connection points for
the neurons, and are made up of an input, a
connection weight, and an output. The neurons may
be connected in a complex network and they work in
parallel with each other.




Back propagation
Bias

Neural network

Neuron

Rumelhart architecture
Synaptic coupling
Threshold potential

Transfer function
Weight

Quantitative Inference
A priori

A posteriori

Bayesian

Body of evidence

Cardinality

Cartesian product
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One of the most common techniques for training an
artificial neural network.

A constant factor added to the weighted inputs to a
neuron.

Loose description of artificial neural network.

The processing element that takes a number of inputs,
together with weights and a bias, and produces an
output that reflects the manner in which the inputs
react.

One of the most common dispositions for an artificial
neural network.

A coupling, with its associated weight, that represents
the influence one input, or intermediate combination
of inputs, has on a following neuron.

An alternative term for bias.
The same as activation function.

A factor quantifying the importance of a synaptic
coupling.

A priori information is that available for a given
situation before an attempt to derive conclusions.

A posteriori information is that resulting from the
drawing of conclusions about a given situation.

Bayesian theory is a means of drawing inferences
from probability distributions.

In evidential reasoning, the information that leads to
the assignment of masses for
statements.

In crisp or fuzzy sets with discrete domains, the
number of domain items belonging to the set.

In crisp or fuzzy sets, the set for which each element
represents one possible combination of elements from
each of two or more component sets, and all possible
combinations are allowable.

propositional
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Compositional rule of inference In fuzzy logic, a rule computing how a fuzzy or crisp

Crisp
Dempster-Shafer theory
Discounting

Evidential interval

Evidential reasoning
Focal element

Frame

Frame of discernment

Fusion

Fuzzy logic

Fuzzy relational matrix

Fuzzy set

Fuzzy value

value for a variable can lead to a fuzzy value for a
new variable.

A crisp value is one that has a single numeric value,
and is therefore not fuzzy.

A means of handling uncertain and/or incomplete
data that is the basis of evidential reasoning.

In evidential reasoning, a means of allowing for the
relative reliability of inconsistent data.

In evidential reasoning, the division of confidence in a
hypothesis into support, plausibility and (implicitly)
uncertainty.

A body of techniques for automated reasoning from
evidence that may be uncertain and/or incomplete.

In evidential reasoning, a hypothesis with non-zero
mass.

1. A group of information about particular objects or
events.

2. Also, in evidential reasoning, the same as frame of
discernment.

The set of all possible values for a variable in its
domain, particularly in evidential reasoning.

The combination of data from different sources.

A logical system in which some or all values
encountered are fuzzy values, and in which the
condition-action statements may be in an
approximate form.

A fuzzy set whose domain is the Cartesian product of
the domains of two or more component sets, not
necessarily fuzzy, and whose membership function
represents the membership of the component domain
elements in a set describing a given relationship.

A set for which each element, or position in the
domain, can have a partial membership, that is, can
have a specific degree of membership, in the range 0
to 1, where 0 represents non-membership, or False,
and 1 represents membership, or True. The value of
the partial membership is known as the membership
function.

A value represented by a fuzzy set over its domain.




Gisting

Hedge

Insufficient reason

Interpretation

Likelihood ratio

Linguistic variable

Mass

Maximum relative entropy

Max-min product

Membership function

Plausibility

Power set

Probabilistic inference
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In evidential reasoning, a technique for finding the
most pointed hypothesis, that is, that hypothesis from
those with equal maximum support which has the
fewest component predicates.

In fuzzy logic, an operator on a fuzzy set that
modifies it in a particular, and usually arbitrary,
fashion. Typical hedges would be very and
approximately.

The rule of insufficient reason states that, if there is no
reason to believe that the probabilities of a given set of
hypotheses are different, the hypotheses should be
assigned equal probability.

In evidential reasoning, the combination of evidence
for and against a proposition to provide a measure of
confidence in its truthfulness.

The ratio of probabilities for and against a hypothesis.

A fuzzy wvalue that is expressed in (possibly
constrained) natural language, such as fairly long.

In evidential reasoning, the value of belief assigned to
a given basic predicate. The masses for all basic
predicates within the frame of discernment sum to
unity.

A means of updating a probability distribution
involving the minimisation of the information
required to be considered.

In fuzzy set theory, a means of deriving a fuzzy set
from an input fuzzy set and a rule represented by a
fuzzy relational matrix.

In fuzzy set theory, the degree to which a position in
the domain belongs to a particular set.

In evidential reasoning, the plausibility of a
hypothesis is the sum of masses not assigned to its
negation, that is, the degree to which the evidence
fails to refute the hypothesis .

The power set of a given set 8 of hypotheses is the set
of sets whose domain is all possible subsets of 6,
including 0 itself. Usually denoted by 28,

Application of Bayesian theory.

45




DSTO-TR-0279

46

Probabilistic logic

Projection

Propositional statement

Statistical inference

Summarisation

Support

Translation

Typicality theory

Uncertain reasoning

Uncertainty

Universe of discourse

Vacuous proposition

World model

A logical system in which reasoning is carried out
using separate conceptual worlds for all allowable
combinations of conditions.

In evidential reasoning, the movement of information
through different contexts representing discrete times,
to allow for the simulation of time-dependent
systems.

In evidential reasoning, a statement that is the union
of one or more basic statements.

The use of statistics from past experience to calculate
probabilities of future events.

In evidential reasoning, the simplification of a body of
evidence by eliminating those propositional
statements for which the assigned mass is low

In evidential reasoning, the sum of the masses
assigned to the basic predicates that constitute a
propositional statement. It is a measure of confidence
in that statement.

In evidential reasoning, the movement of information
between frames of discernment.

In fuzzy logic, the establishment of fuzzy criteria to
summarise the expectations for objects or events.

Any form of logic that can deal with information that
is approximate, missing or contradictory, or where the
relationships between objects and events are not
known exactly.

In evidential reasoning, the difference between
support (confidence in an event) and plausibility (lack
of confidence in its negation).

The domain of a problem, that is, the aggregate of
objects and events that are relevant to its solution.
Also used in evidential reasoning as equivalent to
frame of discernment.

In evidential reasoning, the proposition that contains
all possible predicates, and is therefore intrinsically
true.

A conceptual description of all events and objects
relevant to a particular problem. Different from a
universe of discourse in that it assigns values or states
to all objects and events.




World picture

Decision Updating

Nonmonotonic reasoning

Classification

Attribute vector

Classification
Cluster analysis
Figure of merit

Resemblance matrix

Templating
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A loose expression that can mean either universe of
discourse or world model.

A method of reasoning depending on making the best
estimate of conditions at any decision point, with a
facility for back-tracking if the assumptions lead to an
inconsistent conclusion.

A number of parametric observations represented as
a vector in a multi-dimensional Cartesian coordinate
system.

Sorting of events or objects into different categories,
usually according to objectively measurable criteria.

Classification according to similarity of attributes,
e.g. according to a resemblance matrix.

A means of classification of events or objects
according to conformity with given attribute vectors.

In cluster analysis, a matrix used to describe the
resemblance between any two of a set of objects or
events, based on their positions in a non-dimensional
parameter space.

Classification by assessing the compliance of an
object or event with a number of independent
qualitative or quantitative criteria.
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